64 research outputs found

    1/N expansion of the D3-D5 defect CFT at strong coupling

    Get PDF
    We consider four dimensional U(N) N = 4 SYM theory interacting with a 3d N = 4 theory living on a co dimension-one interface and holographically dual to the D3-D5 system without flux. Localization captures several observables in this dCFT, including its free energy, related to the defect expectation value, and single trace 1/2-BPS composite scalars. These quantities may be computed in a hermitian one-matrix model with non polynomial single-trace potential. We exploit the integrable Volterra hierarchy underlying the matrix model and systematically study its 1/N expansion at any value of the 't Hooft coupling. In particular, the strong coupling regime is determined - up to non-perturbative exponentially suppressed corrections - by differential relations that constrain higher order terms in the 1/N expansion. The analysis is extended to the model with SU(N) gauge symmetry by resorting to the more general Toda lattice equations

    Testing Swampland Conjectures with Machine Learning

    Full text link
    We consider Type IIB compactifications on an isotropic torus T6T^6 threaded by geometric and non geometric fluxes. For this particular setup we apply supervised machine learning techniques, namely an artificial neural network coupled to a genetic algorithm, in order to obtain more than sixty thousand flux configurations yielding to a scalar potential with at least one critical point. We observe that both stable AdS vacua with large moduli masses and small vacuum energy as well as unstable dS vacua with small tachyonic mass and large energy are absent, in accordance to the Refined de Sitter Conjecture. Moreover, by considering a hierarchy among fluxes, we observe that perturbative solutions with small values for the vacuum energy and moduli masses are favored, as well as scenarios in which the lightest modulus mass is much greater than the corresponding AdS vacuum scale. Finally we apply some results on Random Matrix Theory to conclude that the most probable mass spectrum derived from this string setup is that satisfying the Refined de Sitter and AdS scale conjectures.Comment: 30 pages, 14 Figures. (v2) References adde

    Superconformal indices at large N and the entropy of AdS5 x SE5 black holes

    Get PDF
    The large N limit of the four-dimensional superconformal index was computed and successfully compared to the entropy of a class of AdS5 black holes only in the particular case of equal angular momenta. Using the Bethe ansatz formulation, we compute the index at large N with arbitrary chemical potentials for all charges and angular momenta, for general four-dimensional conformal theories with a holographic dual. We conjecture and bring some evidence that a particular universal contribution to the sum over Bethe vacua dominates the index at large N. For SYM, this contribution correctly leads to the entropy of BPS Kerr-Newman black holes in AdS5 x S5 for arbitrary values of the conserved charges, thus completing the microscopic derivation of their microstates. We also consider theories dual to AdS5 x SE5, where SE5 is a Sasaki-Einstein manifold. We first check our results against the so-called universal black hole. We then explicitly construct the near-horizon geometry of BPS Kerr-Newman black holes in AdS5 T^{1,1}, charged under the baryonic symmetry of the conifold theory and with equal angular momenta. We compute the entropy of these black holes using the attractor mechanism and find complete agreement with the field theory predictions

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio

    Rotating black hole entropy from M5-branes

    Get PDF
    We compute the superconformal index of 3d N = 2 superconformal field theories obtained from N M5-branes wrapped on a hyperbolic 3-manifold. Exploiting the 3d-3d correspondence, we use perturbative invariants of SL(N, \u2102) Chern-Simons theory to determine the superconformal index in the large N limit, including corrections logarithmic in N. The leading order partition function provides a microscopic foundation for the entropy function of the dual rotating asymptotically AdS4 black holes. We also verify that the supergravity one-loop contribution to the log N term coincides with the field theoretic result. We propose a 3d-3d formulation for the refined topologically twisted index, and provide strong evidence in support of its vanishing \u2014 which agrees with the fact that the expected dual rotating magnetically-charged black hole does not exist. This provides an interesting link between gravity and a tantalizing mathematical result
    corecore